If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=16t^2-150t-162
We move all terms to the left:
0-(16t^2-150t-162)=0
We add all the numbers together, and all the variables
-(16t^2-150t-162)=0
We get rid of parentheses
-16t^2+150t+162=0
a = -16; b = 150; c = +162;
Δ = b2-4ac
Δ = 1502-4·(-16)·162
Δ = 32868
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32868}=\sqrt{36*913}=\sqrt{36}*\sqrt{913}=6\sqrt{913}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-6\sqrt{913}}{2*-16}=\frac{-150-6\sqrt{913}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+6\sqrt{913}}{2*-16}=\frac{-150+6\sqrt{913}}{-32} $
| 5y=46 | | Y=1/7x-9 | | 1/2(x-10)=-2(5+x) | | 28-4x=10x | | m-2(m-2)=8 | | 3(-x+1)=x-9 | | (4x-5)+(3x+11)=83 | | 1/4(n-6)=1/4n-3/2+6 | | 6x-10=10x+4 | | x+-24=90 | | −3(4−2v)=6v−12 | | 25h=150 | | -5(2x-2)=-5x-5 | | 8x-2+10x+20=180 | | (x-5)*(1/6)=5*(5/6) | | x^2+-11x+18=0 | | 2+2x+4=5x-6 | | X=50-10x | | .3x=150 | | d-59=77 | | 20+g=g | | 9=y/3-13 | | 3.3=-20/3x+40 | | 3(3a-4)=-7 | | 3(x+2)=2(×+3) | | 3j+j-4j+2j=2 | | x+3/4+3x-2/6=1/3 | | 2+7x3+8=79 | | 19-12y=-22-7y | | (X+4)(x-3)=72 | | t+2t-2t=7 | | 3x-1+x=51 |